dna2vec: Consistent vector representations of variable-length k-mers
نویسنده
چکیده
One of the ubiquitous representation of long DNA sequence is dividing it into shorter k-mer components. Unfortunately, the straightforward vector encoding of k-mer as a one-hot vector is vulnerable to the curse of dimensionality. Worse yet, the distance between any pair of one-hot vectors is equidistant. This is particularly problematic when applying the latest machine learning algorithms to solve problems in biological sequence analysis. In this paper, we propose a novel method to train distributed representations of variable-length k-mers. Our method is based on the popular word embedding model word2vec, which is trained on a shallow two-layer neural network. Our experiments provide evidence that the summing of dna2vec vectors is akin to nucleotides concatenation. We also demonstrate that there is correlation between Needleman-Wunsch similarity score and cosine similarity of dna2vec vectors.
منابع مشابه
Corrigendum: Recombination spot identification Based on gapped k-mers
Recombination is crucial for biological evolution, which provides many new combinations of genetic diversity. Accurate identification of recombination spots is useful for DNA function study. To improve the prediction accuracy, researchers have proposed several computational methods for recombination spot identification. The k-mer feature is one of the most useful features for modeling the prope...
متن کاملCorrection: Enhanced Regulatory Sequence Prediction Using Gapped k-mer Features
Oligomers of length k, or k-mers, are convenient and widely used features for modeling the properties and functions of DNA and protein sequences. However, k-mers suffer from the inherent limitation that if the parameter k is increased to resolve longer features, the probability of observing any specific k-mer becomes very small, and k-mer counts approach a binary variable, with most k-mers abse...
متن کامل2D similarity kernels and representations for sequence data
Analysis of large-scale sequential data has become an important task in machine learning and pattern recognition, inspired in part by numerous scientific and technological applications such as the document and text classification or the analysis of music data, or biological sequences. In this work, we consider general, simple 2D matrix representations of sequences, and introduce a class of 2D s...
متن کاملMalware Detection using Classification of Variable-Length Sequences
In this paper, a novel method based on the graph is proposed to classify the sequence of variable length as feature extraction. The proposed method overcomes the problems of the traditional graph with variable length of data, without fixing length of sequences, by determining the most frequent instructions and insertion the rest of instructions on the set of “other”, save speed and memory. Acco...
متن کاملMining K-mers of Various Lengths in Biological Sequences
Counting the occurrence frequency of each k-mer in a biological sequence is an important step in many bioinformatics applications. However, most k-mer counting algorithms rely on a given k to produce single-length k-mers, which is inefficient for sequence analysis for different k. Moreover, existing k-mer counters focus more on DNA sequences and less on protein ones. In practice, the analysis o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1701.06279 شماره
صفحات -
تاریخ انتشار 2017